A Metric for DISH Networks: Analysis, Implications, and Applications


In wireless networks, node cooperation has been exploited as a data relaying mechanism for decades. However, the wireless channel allows for much richer interaction among nodes. In particular, Distributed Information SHaring (DISH) represents a new improvement to multichannel MAC protocol design by using a cooperative element at the control plane. In this approach, nodes exchange control information to make up for other nodes' insufficient knowledge about the environment, and thereby aid in their decision making. To date, what is lacking is a theoretical understanding of DISH. In this paper, we view cooperation as a network resource and evaluate the availability of cooperation, p. We first analyze p in the context of a multichannel multihop wireless network, and then perform simulations which show that the analysis accurately characterizes p as a function of underlying network parameters. Next, we investigate the correlation between p and network metrics such as collision rate, packet delay, and throughput. We find a near-linear relationship between p and the metrics, which suggests that p can be used as an appropriate performance indicator itself. Finally, we apply our analysis to solving a channel bandwidth allocation problem, where we derive optimal schemes and provide general guidelines on bandwidth allocation for DISH networks.


Computer Science

Keywords and Phrases

Channel bandwidth allocation; Control-plane cooperation; Distributed information sharing; Multichannel MAC protocols; Performance analysis

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2010 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Mar 2010