AWDA: An Adaptive Wishart Discriminant Analysis


Linear Discriminant Analysis (LDA) is widely-used for supervised dimension reduction and linear classification. Classical LDA, however, suffers from the ill-posed estimation problem on data with high dimension and low sample size (HDLSS). To cope with this problem, in this paper, we propose an Adaptive Wishart Discriminant Analysis (AWDA) for classification, that makes predictions in an ensemble way. Comparing to existing approaches, AWDA has two advantages: 1) leveraging the Wishart distribution, AWDA ensembles multiple LDA classifiers parameterized by the sampled covariance matrices via a Bayesian Voting Scheme, which theoretically improves the robustness of classification, compared to LDA classifiers using a single (probably ill-posed) covariance matrix estimator; 2) AWDA updates the weights for voting optimally to adapt the local information of each new input data, so as to enable the nonlinear classification. Theoretical analysis indicates that AWDA guarantees a close approximation to the optimal Bayesian inference and thus achieves robust performance on high dimensional data. Extensive experiments on real-world datasets show that our approach outperforms state-of-the-art algorithms by a large margin.

Meeting Name

17th IEEE International Conference on Data Mining, ICDM (2017: Nov. 18-21, New Orleans, LA)


Computer Science

Second Department

Mathematics and Statistics

Keywords and Phrases

Data Mining; Classification; Linear Discriminant Analysis; Bayesian Inference and Wishart Distribution

International Standard Book Number (ISBN)


International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2017 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

21 Nov 2017