RE-Net: A Relation Embedded Deep Model For AU Occurrence And Intensity Estimation


Facial action units (AUs) recognition is a multi-label classification problem, where regular spatial and temporal patterns exist in AU labels due to facial anatomy and human's behavior habits. Exploiting AU correlation is beneficial for obtaining robust AU detector or reducing the dependency of a large amount of AU-labeled samples. Several related works have been done to apply AU correlation to model's objective function or the extracted features. However, this may not be optimal as all the AUs still share the same backbone network, requiring to update the model as a whole. In this work, we present a novel AU Relation Embedded deep model (RE-Net) for AU detection that applies the AU correlation to the model's parameter space. Specifically, we format the multi-label AU detection problem as a domain adaptation task and propose a model that contains both shared and AU specific parameters, where the shared parameters are used by all the AUs, and the AU specific parameters are owned by individual AU. The AU relationship based regularization is applied to the AU specific parameters. Extensive experiments on three public benchmarks demonstrate that our method outperforms the previous work and achieves state-of-the-art performance on both AU detection task and AU intensity estimation task.


Computer Science


National Science Foundation, Grant CNS-1629898

International Standard Book Number (ISBN)


International Standard Serial Number (ISSN)

1611-3349; 0302-9743

Document Type

Article - Conference proceedings

Document Version


File Type





© 2023 Springer, All rights reserved.

Publication Date

01 Jan 2021