Replicating data across geo-distributed datacenters is usually necessary for large scale cloud services to achieve high locality, durability and availability. One of the major challenges in such geo-replicated data services lies in consistency maintenance, which usually suffers from long latency due to costly coordination across datacenters. Among others, transaction chopping is an effective and efficient approach to address this challenge. However, existing chopping is conducted statically during programming, which is stubborn and complex for developers. In this article, we propose Dynamic Transaction Chopping (DTC), a novel technique that does transaction chopping and determines piecewise execution in a dynamic and automatic way. DTC mainly consists of two parts: a dynamic chopper to dynamically divide transactions into pieces according to the data partition scheme, and a conflict detection algorithm to check the safety of the dynamic chopping. Compared with existing techniques, DTC has several advantages: transparency to programmers, flexibility in conflict analysis, high degree of piecewise execution, and adaptability to data partition schemes. A prototype of DTC is implemented to verify the correctness of DTC and evaluate its performance. The experiment results show that our DTC technique can achieve much better performance than similar work.


Computer Science

Keywords and Phrases

Cloud service; cloud storage; data replication; datacenter; transaction processing

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2023 Institute of Electrical and Electronics Engineers; Computer Society, All rights reserved.

Publication Date

01 Nov 2022