Behavior of Piezoelectric Friction Dampers under Dynamic Loading
Abstract
Piezoelectric materials are stressed when exposed to electric field and subjected to a restraint in their motion due to the electromechanical coupling effect. Use can be made of this property to control the motion of civil engineering structures. This paper is focused on the conceptual design of a piezoelectric friction damper and the analytical study on its behavior under harmonic loads. The friction damper takes advantage of the slip mode at the friction surface to endure the large deformation in structures and uses the piezoelectric actuators to regulate the clamped force on the damper. A new algorithm is introduced to determine the friction force for increased energy dissipation capacity. It combines the hysteretic and viscous damping mechanisms. Analytical results have shown, the superiority of the proposed algorithm over others in terms of energy dissipation. The damper is then used to mitigate the dynamic responses of a single-story frame structure subjected to harmonic loads. The structural responses controlled with a friction damper are determined numerically. However, it is found that the structure with the damper can be approximately analyzed with an equivalent linear system. This approximation greatly simplifies the design of friction dampers for practical applications.
Recommended Citation
G. Chen and C. Chen, "Behavior of Piezoelectric Friction Dampers under Dynamic Loading," Proceedings of the Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways (2000, Newport Beach, CA), vol. 3988, pp. 54 - 63, SPIE--The International Society for Optical Engineering, Mar 2000.
The definitive version is available at https://doi.org/10.1117/12.383170
Meeting Name
Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways (2000: Mar. 6-7, Newport Beach, CA)
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Actuators; Adaptive Control Systems; Algorithms; Damping; Dynamic Loads; Electric Field Effects; Energy Dissipation; Friction; Linearization; Nonlinear Control Systems; Piezoelectric Devices; Adaptive Contact Force; Equivalent Linearization; Piezoelectric Friction Dampers; Structural Analysis
International Standard Serial Number (ISSN)
0277-786X
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2000 SPIE--The International Society for Optical Engineering, All rights reserved.
Publication Date
01 Mar 2000