A Force-Based Model for Composite Steel-Concrete Beams with Partial Interaction
Abstract
This paper presents a new force-based beam-column element for the nonlinear analysis of composite steel-concrete beams with partial interaction. The element is made up of three components: (a) a fiber beam-column element that models the behavior of the steel girder, (b) a fiber beam-column element that models the behavior of the concrete deck, and (c) a bond element that models the transfer of forces between the steel and concrete elements through shear connectors. The model neglects uplift and frictional effects. The fiber beam-columns are force-based elements that depend on force interpolation functions. A linear bending moment and a constant axial force serve as the interpolation functions. An important factor that favors the use of force-based elements in modeling composite structures is their ability to treat any type of distributed element loads. Distributed element loads are applied internally in a continuous manner by force superposition at the control sections. The state determination of these elements is based on an iterative solution that determines the element resisting forces and stiffness matrix. The bond element is a spring-type element that assumes a linear bond stress variation along the length. The nonlinear behavior of the composite element derives entirely from the constitutive laws of the steel, the concrete and the shear connectors. The paper concludes with a correlation study to investigate the validity of the model. Good agreement between analysis and experimental results was observed.
Recommended Citation
A. S. Ayoub, "A Force-Based Model for Composite Steel-Concrete Beams with Partial Interaction," Journal of Constructional Steel Research, Elsevier, Jan 2004.
The definitive version is available at https://doi.org/10.1016/j.jcsr.2004.08.004
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Composite Steel; Deformable Shear Connectors; Flexibility Formulation; Force-Based Formulation; Partial Interaction; Composite construction; Concrete beams
International Standard Serial Number (ISSN)
0143-974X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 Elsevier, All rights reserved.
Publication Date
01 Jan 2004