Experimental Characterization of Piezoelectric Friction Dampers
Abstract
A piezoelectric friction damper was designed and fabricated to control the 1/4-scale, three-story frame structure in the Structures Laboratory at the University of Missouri-Rolla. In this paper, the damper is characterized in terms of energy dissipation, frequency and temperature dependence, and long-term durability under harmonic loading.
The damper was tested with four piezoelectric stack actuators, as critical components of the damper were subjected to constant voltages to simulate the behavior of passive friction dampers. It was also tested under linearly increasing voltage signals to understand the adaptability of the damper to external electric energy. Based on the experimental results, it was concluded that the load-displacement loops of the damper are nearly rectangular and the effective stiffness of the damper linearly increases with the clamping force. The area of each loop does not change significantly with the excitation frequency. The properties of the damper do not vary with its ambient temperature and remain almost the same after being tested for 30000 cycles. The friction coefficient of the damper is independent upon the excitation frequency (higher than 2 Hz) and the clamping force (larger than 100 pounds on each actuator). Although the friction force increases with the applied voltage, its magnitude is significantly smaller than expected. Several possible reasons for less friction were pinpointed.
Recommended Citation
G. T. Garrett et al., "Experimental Characterization of Piezoelectric Friction Dampers," Proceedings of the 8th Annual International Symposium on Smart Structures and Materials (2001, Newport Beach, CA), vol. 4330, pp. 405 - 415, SPIE -- The International Society for Optical Engineering, Mar 2001.
The definitive version is available at https://doi.org/10.1117/12.434142
Meeting Name
8th Annual International Symposium on Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways (2001: Mar. 4-8, Newport Beach, CA)
Department(s)
Civil, Architectural and Environmental Engineering
Second Department
Materials Science and Engineering
Keywords and Phrases
Adaptive contact force; Friction damper; Piezoelectric actuators; Semi-active control; Variable friction; Actuators; Damping; Electric excitation; Electric potential; Harmonic generation; Loads (forces); Structural frames; Thermal effects; Piezoelectric devices
International Standard Serial Number (ISSN)
0277-786X
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2001 SPIE -- The International Society for Optical Engineering, All rights reserved.
Publication Date
01 Mar 2001