Abstract

This study proposes that a proactive quality assurance (QA) framework for asphalt mixes with recycled materials, i.e., reclaimed asphalt pavement and recycled asphalt shingles, should be developed. Quality control (QC) is generally concerned with the contractor's obligation to produce mixes which meet the job mix formula (JMF) targets. However, QA considers the variability in fabrication processes and materials and offers monitoring by evaluating the contractor's performance. Although both aggregate gradations and asphalt contents were within the JMF specifications, the recovered binders revealed significant differences from the contract binders in the JMF. Rheological tests indicated increased stiffness and elasticity but reduced capability to relax thermal stresses in binders recovered from plant–lab- and lab-fabricated mixtures, compared to field mixtures. Thermal-rheological analysis models corroborated these results by demonstrating reduced decomposition areas for more aged binders, enhancing performance prediction—especially for limited binder amounts. The creation of a QA decision matrix facilitated uniform, performance-oriented assessments. The matrix indicated only 23% of the mixtures satisfied JMF criteria and reported QC data—predominantly field mixtures—underscoring the impact of the fabrication mechanisms and the use of soft binders. This matrix integrates statistical analysis and binder performance assessments as a tool for verifying material compliance and tracking contractor efficiency. It reflects a transition from traditional QC toward a more proactive QA framework for sustainable pavements.

Department(s)

Civil, Architectural and Environmental Engineering

Publication Status

Open Access

Keywords and Phrases

ANOVA; decision matrix; fabrication mechanism; interactions; quality assurance; RAP; RAS; recovered binders

International Standard Serial Number (ISSN)

2313-4321

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2025 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Apr 2025

Share

 
COinS