Abstract

An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C6-C10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C6-C10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants.

Department(s)

Civil, Architectural and Environmental Engineering

Publication Status

Open Access

Comments

Natural Environment Research Council, Grant ncas10005

Keywords and Phrases

C -C aldehydes 6 10; indoor air quality; nitrated organic species; ozone deposition; skin emissions; surface chemistry

International Standard Serial Number (ISSN)

1600-0668; 0905-6947

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Wiley, All rights reserved.

Publication Date

01 Sep 2017

PubMed ID

28303599

Share

 
COinS