Characterization Of Extrudability Using Rheology And Desorptivity

Abstract

Successful implementation of extrusion-based three-dimensional (3-D) printing requires the development of print materials with adapted rheology. In this study, filtration characteristics coupled with rheological properties of mortar mixtures are investigated to characterize the extrudability of print materials and establish a "printability window"(that is, the acceptable range of material properties for successful extrusion and shape stability). The extrudability was measured as the maximum force needed for the ram extrusion of the material. The fluid filtration rate was assessed in terms of desorptivity of the fresh mixture under pressure. The yield stress, plastic viscosity, and desorptivity were varied by changing the water-cement ratio (w/c), high-range water-reducing admixture (HRWRA) dosage, and welan gum (WG) content. Regression analysis indicated that during extrusion-based printing, the yield stress and desorptivity values can exhibit a more significant effect on extrudability than plastic viscosity.

Department(s)

Civil, Architectural and Environmental Engineering

Keywords and Phrases

extrudability; fluid filtration; printability window; rheology; three-dimensional (3-D) printing

International Standard Serial Number (ISSN)

0889-325X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Concrete Institute, All rights reserved.

Publication Date

01 Jan 2024

Share

 
COinS