Abstract

Phase change materials (PCMs) have great potential for applications in energy efficient buildings. In this study, an innovative method of macro-encapsulation of PCM using hollow steel balls (HSB) was developed and the thermal and mechanical performance of PCM-HSB concrete was examined. The macro-encapsulation system (PCM-HSB) was attached with a metal clamp (c) for better mechanical interlocking with the mortar matrix. The latent heat of PCM-HSB-c that can be acquired is approximately 153.1 J/g, which can be considered to rank highly among PCM composites. According to the self-designed thermal performance evaluation, the PCM–HSB-c concrete panel is capable of reducing and deferring the peak indoor temperature. The indoor temperature of the room model using PCM-HSB-c panels was significantly lower than the ones with normal concrete panels by a range of 3–6%. Furthermore, the test room using a higher PCM-HSB-c content demonstrated a greater ability to maintain a lower indoor room temperature for a longer period of time during heating cycles. In consideration of the mechanical properties, thermal performance and other aspects of cost factors, 50% and 75% PCM-HSB-c replacement levels are recommended in producing concrete.

Department(s)

Civil, Architectural and Environmental Engineering

Comments

Australian Research Council, Grant G1500225

Keywords and Phrases

Elevated temperature test; Hollow steel ball; Macro-encapsulated phase change material; Performance improvement; Thermal energy storage capacity; Thermal performance

International Standard Serial Number (ISSN)

0306-2619

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 2017

Share

 
COinS