"Time-Weighted Average SPME Analysis for in Planta Determination of CVO" by Emily M. Sheehan, Matt A. Limmer et al.
 

Abstract

The Potential of Phytoscreening for Plume Delineation at Contaminated Sites Has Promoted Interest in Innovative, Sensitive Contaminant Sampling Techniques. Solid-Phase Microextraction (SPME) Methods Have Been Developed, Offering Quick, Undemanding, Noninvasive Sampling Without the Use of Solvents. in This Study, Time-Weighted Average SPME (TWA-SPME) Sampling Was Evaluated for in Planta Quantification of Chlorinated Solvents. TWA-SPME Was Found to Have Increased Sensitivity over Headspace and Equilibrium SPME Sampling. using a Variety of Chlorinated Solvents and a Polydimethylsiloxane/carboxen (PDMS/CAR) SPME Fiber, Most Compounds Exhibited Near Linear or Linear Uptake over the Sampling Period. Smaller, Less Hydrophobic Compounds Exhibited More Nonlinearity Than Larger, More Hydrophobic Molecules. using a Specifically Designed in Planta Sampler, Field Sampling Was Conducted at a Site Contaminated with Chlorinated Solvents. Sampling with TWA-SPME Produced Instrument Responses Ranging from 5 to over 200 Times Higher Than Headspace Tree Core Sampling. This Work Demonstrates that TWA-SPME Can Be Used for in Planta Detection of a Broad Range of Chlorinated Solvents and Methods Can Likely Be Applied to Other Volatile and Semivolatile Organic Compounds. © 2012 American Chemical Society.

Department(s)

Civil, Architectural and Environmental Engineering

Comments

Seventh Framework Programme, Grant 213161

International Standard Serial Number (ISSN)

1520-5851; 0013-936X

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 American Chemical Society, All rights reserved.

Publication Date

20 Mar 2012

PubMed ID

22332592

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 23
    • Policy Citations: 2
  • Usage
    • Downloads: 30
  • Captures
    • Readers: 30
see details

Share

 
COinS
 
 
 
BESbswy