Abstract
In this study, computational fluid dynamics (CFD) was employed to simulate the pipe flow of 18 self-consolidating and four highly workable concrete mixtures in a 30-m long pumping circuit. Pressure loss (ΔP) in 100- and 125-mm diameter (DP) pipelines was measured under low (1.2–6.2 l/s) and high (8.1–16.4 l/s) flow rates (Q). The numerical simulation was successfully carried out using a two-fluid model and a new variable-viscosity single-fluid approach, namely double-Bingham and tri-viscous models, respectively. The radial variation of rheological properties of the concrete across the pipe section, representing the plug flow, sheared concrete, and lubrication layer (LL) zones was successfully simulated based on a total of 404 pipe flow experiments. The relative LL viscous constant (ηLL) values obtained using numerical simulations-to-those obtained experimentally using a tribometer ranged between 30% and 200%. Moreover, the coupled effect of the characteristics of different flow zones, DP, and Q on ΔP was evaluated.
Recommended Citation
T. Tavangar et al., "Novel Tri-Viscous Model to Simulate Pumping of Flowable Concrete through Characterization of Lubrication Layer and Plug Zones," Cement and Concrete Composites, vol. 126, article no. 104370, Elsevier, Feb 2022.
The definitive version is available at https://doi.org/10.1016/j.cemconcomp.2021.104370
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Concrete pumping; Lubrication layer; Numerical simulation; Plug flow; Pressure loss; Rheology
International Standard Serial Number (ISSN)
0958-9465
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
01 Feb 2022
Comments
Université de Sherbrooke, Grant None