Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)
Abstract
With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from 21 June to 20 July 2017 and from 15 January to 18 February 2018 in the Azores. The flights were designed to maximize the synergy between in situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.
Recommended Citation
J. Wang and R. Wood and M. P. Jensen and J. Christine Chiu and Y. Liu and K. Lamer and N. Desai and S. E. Giangrande and D. A. Knopf and P. Kollias and A. Laskin and X. Liu and C. Lu and D. Mechem, "Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)," Bulletin of the American Meteorological Society, vol. 103, no. 2, pp. E619 - E641, American Meteorological Society, Feb 2022.
The definitive version is available at https://doi.org/10.1175/BAMS-D-19-0220.1
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Aerosols; Aircraft Observations; Atmosphere; Cloud Retrieval; Clouds; North Atlantic Ocean
International Standard Serial Number (ISSN)
1520-0477; 0003-0007
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2022 American Meteorological Society, All rights reserved.
Publication Date
01 Feb 2022
Comments
The research was supported by the Atmospheric System Research (ASR) program as part of the DOE Office of Biological and Environmental Research under Awards DE-SC0020259 (J. Wang), DE-SC0012704 (BNL), DE-SC0016522 (D. Mechem), DE-SC0021167 (C. Chiu), DE-SC0018948 (A. Laskin and R. Moffet), DE-SC0016370 (D. Knopf), KP1701000/57131 (J. Shilling and M. Zawadowicz), DE-AC02-06CH11357 (V. Ghate), and DE-SC0020053 (R. Shaw). S. S. Yum and J. Yeom acknowledge the support of Korea Meteorological Administration Research and Development Program under Grant KMI2018-03511. Chunsong Lu and Sinan Gao were supported by the National Natural Science Foundation of China (41822504). Xiquan Dong was supported by the NSF project under Grant AGS-2031751 and as part of the “Enabling Aerosol-Cloud Interactions at Global Convection-Permitting Scales (EAGLES)” project (74358), funded by the U.S. Department of Energy, Office of Biological and Environmental Research, Earth System Modeling program with a subcontract to The University of Arizona. Part of the abstract was published by American Geophysical Union 2017 Fall Conference.