A Multi-Camera based Photogrammetric Method for Three-Dimensional Full-Field Displacement Measurements of Geosynthetics during Tensile Test
Abstract
Conventional methods for measuring the deformational response of geosynthetics, such as the linear variable differential transformers (LVDTs), strain gauges, and extensometers have several limitations in fully determining the complete strain distribution in geosynthetics. This paper presents a multi-camera based photogrammetric method to track the 3D full-field displacements of geosynthetics during tensile tests. The proposed method extends the conventional one-camera based photogrammetry for static object measurements to multi-camera-based photogrammetry for object measurements with continuous movements or deformations. It is non-contact, cost-effective, highly accurate, and capable of measuring the 3D full-field displacements of the geosynthetics. A tensile test on a geogrid specimen was performed to verify the effectiveness and accuracy of the proposed photogrammetric method. The results from the tensile tests using both the proposed method and conventional methods, such as machine-controlled displacement measurements and extensometer, were presented and compared. It was observed that the average absolute difference between the proposed photogrammetric method and the machine-controlled movements of the bottom clamp was 0.25%, and the average absolute error was 0.038 mm. The average difference in measurements made by the proposed method and extensometer was 0.07%. It was further found that the proposed method can provide more comprehensive input, such as the complete strain and modulus distributions in the geosynthetics, for a probability-based geosynthetics design.
Recommended Citation
X. Xia et al., "A Multi-Camera based Photogrammetric Method for Three-Dimensional Full-Field Displacement Measurements of Geosynthetics during Tensile Test," Geotextiles and Geomembranes, Elsevier, Jan 2021.
The definitive version is available at https://doi.org/10.1016/j.geotexmem.2021.03.012
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
3D deformation; Dynamic tests; Full-field displacement measurement; Geosynthetics; Multi-camera-based photogrammetric method
International Standard Serial Number (ISSN)
0266-1144
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2021 International Geosynthetics Society (IGS), All rights reserved.
Publication Date
01 Jan 2021