Abstract

This manuscript focused on analyzing electric vehicles’ (EV) charging behavior patterns with a functional data analysis (FDA) approach, with the goal of providing theoretical support to the EV infrastructure planning and regulation, as well as the power grid load management. 5-year real-world charging log data from a total of 455 charging stations in Kansas City, Missouri, was used. The focuses were placed on analyzing the daily usage occupancy variability, daily energy consumption variability, and station-level usage variability. Compared with the traditional discrete-based analysis models, the proposed FDA modeling approach had unique advantages in preserving the smooth function behavior of the data, bringing more flexibility in the modeling process with little required assumptions or background knowledge on independent variables, as well as the capability of handling time series data with different lengths or sizes. In addition to the patterns revealed in the EV charging station’s occupancy and energy consumption, the differences between EV driver’s charging time and parking time were analyzed and called for the needs for parking regulation and enforcement. The different usage patterns observed at charging stations located on different land-use types were also analyzed.

Department(s)

Civil, Architectural and Environmental Engineering

Comments

This material is based on the work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s (EERE) Vehicle Technologies Office under the Award Number DE-EE008474.

International Standard Serial Number (ISSN)

0197-6729; 2042-3195

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2020 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

23 Nov 2020

Share

 
COinS