Adhesion between MXenes and Other 2D Materials
Abstract
MXenes, a large family of two-dimensional (2D) early transition metal carbides and nitrides, have excellent electrical and electrochemical properties, which can also be explored in assemblies with other 2D materials, like graphene and transition metal dichalcogenides (TMDs), creating heterostructures with unique properties. Understanding the interaction mechanism between 2D materials is critical for the design and manipulation of these 2D heterostructures. Our previous work investigated the interaction between SiO2 and two MXenes (Ti3C2Tx and Ti2CTx). However, no experimental research has been done on MXene interlayer interactions and interactions in MXene heterostructures. Here, we used atomic force microscopy (AFM) with SiO2 tip and Ti3C2Tx and Ti2CTx MXene-coated tips, respectively, to measure the adhesion energies of graphene, MoSe2, Ti3C2Tx, and Ti2CTx MXene with other 2D materials. The measured adhesion energies show that only the interfaces involving graphene demonstrate dependence on the number of material monolayers in a stack. Comparing 40 interacting pairs of 2D materials, the lowest adhesion energy (∼0.27 J/m2) was found for the interfaces involving MoSe2 and the highest adhesion energy was observed for the interfaces involving Ti3C2Tx (∼1.23 J/m2). The obtained set of experimental data for 2D interfaces involving MXenes provides a basis for a future in-depth understanding of adhesive mechanisms at interfaces between 2D materials, which is an important topic for the design of 2D heterostructures with controlled interfacial strength and properties.
Recommended Citation
Y. Li et al., "Adhesion between MXenes and Other 2D Materials," ACS Applied Materials and Interfaces, vol. 13, no. 3, pp. 4682 - 4691, American Chemical Society (ACS), Jan 2021.
The definitive version is available at https://doi.org/10.1021/acsami.0c18624
Department(s)
Civil, Architectural and Environmental Engineering
Second Department
Chemistry
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Atomic force microscopy; MXenes; Ti CT 2 x; Ti C T 3 2 x; Transition metal dichalcogenides
International Standard Serial Number (ISSN)
1944-8244; 1944-8252
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2021 American Chemical Society (ACS), All rights reserved.
Publication Date
27 Jan 2021
Comments
Y.X.L., C.J.W., S.H.H., V.N.M., and C.L.W. gratefully acknowledge the financial support of this work by the National Science Foundation through Grant no. CMMI-1930881. These authors also acknowledge funding support from Mid-America Transportation Center and Missouri Department of Transportation.