Abstract
In this study, graphene/silver nanowire (Gr/AgNW)-based, Fe-C coated long period fiber gratings (LPFG) sensors were tested up to 72 hours in 3.5 w.t% NaCl solution for corrosion-induced mass loss measurement under four strain levels: 0, 500, 1000 and 1500 µ∈. The crack and interfacial bonding behaviors of laminate Fe-C and Gr/AgNW layer structures were characterized using Scanning Electron Microscopy (SEM) and electrical resistance measurement. Both optical transmission spectra and electrical impedance spectroscopy (EIS) data were simultaneously measured from each sensor. Under increasing strains, transverse cracks appeared first and were followed by longitudinal cracks on the laminate layer structures. The spacing of transverse cracks and the length of longitudinal cracks were determined by the bond strength at the weak Fe-C and Gr/AgNW interface. During corrosion tests, the shift in resonant wavelength of the Fe-C coated LPFG sensors resulted from the effects of the Fe-C layer thinning and the NaCl solution penetration through cracks on the evanescent field surrounding the LPFG sensors. Compared with the zero-strained sensor, the strain-induced cracks on the laminate layer structures initially increased and then decreased the shift in resonant wavelength in two main stages of the Fe-C corrosion process. In each corrosion stage, the Fe-C mass loss was linearly related to the shift in resonant wavelength under zero strain and with the applied strain taken into account in general cases. The general correlation equation was validated at 700 and 1200 µ∈ to a maximum error of 2.5% in comparison with 46.5% from the zero-strain correlation equation.
Recommended Citation
C. Guo et al., "Corrosion-Induced Mass Loss Measurement under Strain Conditions through Gr/AgNW-Based, Fe-C Coated LPFG Sensors," Sensors (Switzerland), vol. 20, no. 6, MDPI AG, Mar 2020.
The definitive version is available at https://doi.org/10.3390/s20061598
Department(s)
Civil, Architectural and Environmental Engineering
Research Center/Lab(s)
INSPIRE - University Transportation Center
Keywords and Phrases
Corrosion Sensor; Electrochemical Test; Graphene; LPFG Sensor; Mass Loss Measurement; Silver Nanowire; Various Strain Level
International Standard Serial Number (ISSN)
1424-8220; 1424-8220
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2020 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Mar 2020