UV-Resistant GFRP Composite using Carbon Nanotubes

Abstract

Degradation due to exposure to ultraviolet (UV) radiation is an important durability challenge with glass fiber reinforced polymer (GFRP) composite. Design and construction guidelines of GFRP suggest using UV protection paint to prevent GFRP degradation. In this study we examine the possible use of multi-walled carbon nanotubes (MWCNTs) dispersed in epoxy matrix to produce UV-resistant GFRP composite. We suggest that MWCNTs can result in a significant improvement to UV degradation resistance in the GFRP. Direct tension tests of GFRP coupons incorporating 0.25 wt%, 0.50 wt%, and 1.0 wt% of MWCNTs show inherent stability and good resistance to UV degradation. Microstructural analysis shows the ability of MWCNTs to resist polymer backbone disassociation caused by UV radiation thus preventing UV degradation in GFRP. Scanning electron microscopy (SEM) images show MWCNTs can resist microcracking caused by UV radiation and thus improve UV degradation resistance of GFRP.

Department(s)

Civil, Architectural and Environmental Engineering

Keywords and Phrases

Carbon nanotubes; GFRP durability; Glass fibers; Ultra-violet radiation

International Standard Serial Number (ISSN)

0950-0618

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2019 Elsevier Ltd, All rights reserved.

Publication Date

01 Sep 2019

Share

 
COinS