Stress Transfer from Rocking Shallow Foundations on Soil-Cement Reinforced Clay
Abstract
Equivalent-static pushover analyses with a three-dimensional (3D), nonlinear, finite-difference model are used to investigate the static and seismic stresses imposed on soil-cement grid reinforcements in soft clay profiles by overlying structures supported by shallow footings. The goal is to evaluate the potential stress concentrations in the soil-cement grid during foundation rocking and the potential for large foundation settlements associated with the local crushing of the soil-cement. The numerical analyses are first validated using data from dynamic centrifuge experiments that included cases with and without large foundation settlements and localized crushing of the soil-cement grids. The experimental and numerical results indicate that the stresses imposed on the soil-cement grid by the overlying structures must account for foundation rocking during strong shaking and stress concentrations at the soil-cement grid intersections. The numerical analyses provide reasonable predictions of the structural rocking loads and the zone of the expected crushing or lack of crushing, but underestimate the accumulation of foundation settlements when the seismic demands repeatedly exceed the soil-cement strength. The simulated moment-rotation and uplift behavior of the footings under monotonic lateral loading are reasonably consistent with the dynamic centrifuge test results. Parametric analyses using the validated numerical model illustrate how the stress transfer varies with the area replacement ratio, the thickness of the top sand layer, the properties of the bearing sand layer, and the relative stiffness of the soil-cement and the surrounding soil. A design model for estimating the stresses imposed on a soil-cement grid by rocking foundations was developed and shown to provide a reasonable basis for assessing whether or not local damage to the soil-cement grid is expected.
Recommended Citation
M. Khosravi et al., "Stress Transfer from Rocking Shallow Foundations on Soil-Cement Reinforced Clay," Soils and Foundations, vol. 59, no. 4, pp. 966 - 981, Elsevier B.V., Aug 2019.
The definitive version is available at https://doi.org/10.1016/j.sandf.2019.04.003
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Dynamic kinematic loads; Dynamic response; Rocking foundation; Single degree of freedom system; Soil-cement grid reinforcement
International Standard Serial Number (ISSN)
0038-0806
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2019 Elsevier B.V., All rights reserved.
Publication Date
01 Aug 2019
Comments
Support for this work was provided by the National Science Foundation ( NSF ) through the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEESR) under Grant No. CMMI-1208117, the Pacific Earthquake Engineering Research Center ( PEER ), and Hayward Baker, Inc.