Abstract

Two-dimensional transition metal carbides (MXenes) have attracted a great interest of the research community as a relatively recently discovered large class of materials with unique electronic and optical properties. Understanding of adhesion between MXenes and various substrates is critically important for MXene device fabrication and performance. We report results of direct atomic force microscopy (AFM) measurements of adhesion of two MXenes (Ti3C2Tx and Ti2CTx) with a SiO2 coated Si spherical tip. The Maugis-Dugdale theory was applied to convert the AFM measured adhesion force to adhesion energy, while taking into account surface roughness. The obtained adhesion energies were compared with those for mono-, bi-, and tri-layer graphene, as well as SiO2 substrates. The average adhesion energies for the MXenes are 0.90 ± 0.03 J m-2 and 0.40 ± 0.02 J m-2 for thicker Ti3C2Tx and thinner Ti2CTx, respectively, which is of the same order of magnitude as that between graphene and silica tip.

Department(s)

Civil, Architectural and Environmental Engineering

Second Department

Chemistry

Research Center/Lab(s)

Center for Research in Energy and Environment (CREE)

Second Research Center/Lab

Center for High Performance Computing Research

Comments

The authors would like to thank Material Research Center at Missouri University of Science and Technology for financial support

Keywords and Phrases

Graphene; Structural properties; Two-dimensional materials

International Standard Serial Number (ISSN)

2041-1723

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2019 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

08 Jul 2019

Share

 
COinS