Seismicity Enhances Macrodispersion in Finite Porous and Fractured Domains: A Pore-Scale Perspective
Abstract
Understanding the effects of oscillating flow field induced by seismicity on the transport process is vital for predicting the fate and transport of solute in many dynamic environments. However, there is prominent discrepancy in arguing with the response of dispersion to the oscillating flow field (i.e., the longitudinal dispersion coefficient would decrease, increase, or maintain unchanged). To unravel the underpinning physics about this controversial response, we simulated two-hundred twenty pore-scale numerical experiments for the seismicity-induced oscillating flow field and associated solute transport in the idealized finite porous (i.e., fluidic plate) and fractured (i.e., parallel plates) domains. The numerically obtained breakthrough curves were fitted to the macroscopic advection-dispersion equation to retrieve the mean velocity and apparent macrodispersion coefficient (DL). We found that DL increases to its maxima when the oscillating flow field resonates with the finite systems, that is, the period (T) of the oscillating flow field or the seismic wave approaches the pore volume (τ) of a finite domain. The resonant effects diminish and DL barely changes when T is much larger or smaller than τ. Moreover, the degree of enhancement in DL increases exponentially with the amplitude of the seismic force. Fundamental understanding of the response of macrodispersion to the oscillating flow field adds value in predicting the fate of solute in transient flow systems via the advection-dispersion equation.
Recommended Citation
L. Zheng et al., "Seismicity Enhances Macrodispersion in Finite Porous and Fractured Domains: A Pore-Scale Perspective," Journal of Geophysical Research: Solid Earth, vol. 124, no. 3, pp. 2844 - 2857, Blackwell Publishing Ltd, Mar 2019.
The definitive version is available at https://doi.org/10.1029/2018JB016921
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
finite domain; macrodispersion; oscillating flow field; pore scale; porous and fractured media; seismicity
International Standard Serial Number (ISSN)
2169-9313
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 American Geophysical Union, All rights reserved.
Publication Date
01 Mar 2019