Solving Moving-Boundary Problems with the Wavelet Adaptive Radial Basis Functions Method

Abstract

Moving boundaries are associated with the time-dependent problems where the momentary position of boundaries needs to be determined as a function of time. The level set method has become an effective tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, computer animation and image processing. This work extends our earlier work on solving moving boundary problems with adaptive meshless methods. In particular, the objective of this paper is to investigate numerical performance the radial basis functions (RBFs) methods, with compactly supported basis and with global basis, coupled with a wavelet node refinement technique and a greedy trial space selection technique. Numerical simulations are provided to verify the effectiveness and robustness of RBFs methods with different adaptive techniques.

Department(s)

Civil, Architectural and Environmental Engineering

Comments

This work has been financed by the Slovenian Research Agency (ARRS) through the research program Geotechnology (P0-0268), and Structural mechanics (P2-0260).

Keywords and Phrases

Adaptive greedy algorithm; Compactly supported RBFs; Global RBFs; Level set method; Moving-boundary problems; Partial differential equations; Wavelet method

International Standard Serial Number (ISSN)

0045-7930

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2013 Elsevier Ltd., All rights reserved.

Publication Date

01 Nov 2013

Share

 
COinS