Effect of Nano-SiO₂ Particles and Curing Time on Development of Fiber-Matrix Bond Properties and Microstructure of Ultra-High Strength Concrete
Abstract
Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO2 varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO2 content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness around the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO2 dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO2 content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.
Recommended Citation
Z. Wu et al., "Effect of Nano-SiO₂ Particles and Curing Time on Development of Fiber-Matrix Bond Properties and Microstructure of Ultra-High Strength Concrete," Cement and Concrete Research, vol. 95, pp. 247 - 256, Elsevier, May 2017.
The definitive version is available at https://doi.org/10.1016/j.cemconres.2017.02.031
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Concretes; Curing; Fibers; High performance concrete; High strength steel; Hydration; Mercury (metal); Microhardness; Microstructure; Scanning electron microscopy; Steel fibers; Microstructural analysis; Nano- SiO; Pullout energy; Statistical modeling; UHSC; Bond strength (materials); Nano-SiO2; Statistical model
International Standard Serial Number (ISSN)
0008-8846
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 Elsevier, All rights reserved.
Publication Date
01 May 2017
Comments
The authors would like to acknowledge financial support of the National Science Foundation of China (Nos. U1305243 and 51378196) and Energy Consortium Research Center (No. SMR-1406-09) as well as the RE-CAST University Transportation Center (No. DTRT13-G-UT C45) at Missouri University of Science and Technology.