In-Plane Flexural Strength of Unbonded Post-Tensioned Concrete Masonry Walls
Abstract
The target of this paper is to develop a design equation to predict the in-plane flexural strength of unbonded post-tensioned masonry walls (PT-MWs). Using validated finite element models, a parametric study was performed to investigate the effect of different parameters on the wall rotation and compression zone length. Multivariate regression analysis was performed to develop an equation to estimate the rotation of the unbonded PT-MWs at peak strength. Using the drift capacity of the walls and the proposed equation, a design expression and a related step-by-step design method have been developed to estimate the flexural strength of unbonded PT-MWs. The accuracy of the procedure was examined using experimental and finite element model results. Ignoring the elongation of the PT bars in the strength prediction resulted in an underestimation of about 40%, while using the proposed approach the prediction improved significantly. It was found that the wall length and axial stress ratio are the most influential factors contributing to the rotation and compression zone length of unbonded PT-MWs. According to the results presented in this study it is recommended to limit the axial stress ratio to a value of 0.15. In addition, limiting the maximum spacing between PT bars to a distance of six times the wall thickness is recommended to prevent local shear failure and vertical splitting cracking.
Recommended Citation
R. Hassanli et al., "In-Plane Flexural Strength of Unbonded Post-Tensioned Concrete Masonry Walls," Engineering Structures, vol. 136, pp. 245 - 260, Elsevier, Apr 2017.
The definitive version is available at https://doi.org/10.1016/j.engstruct.2017.01.016
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Bending strength; Forecasting; Joints (structural components); Masonry construction; Masonry materials; Multivariant analysis; Regression analysis; Retaining walls; Shear strength; Walls (structural partitions); Influential factors; Masonry; MSJC2013; Multivariate regression analysis; Post tensioned; Post-tensioned concrete; Strength prediction; Unbonded post-tensioning; Finite element method; Compression; Concrete structure; Cracking (fracture); Design method; Flexure; Masonry; Shear strength; Tension; Wall; Flexural strength; In-plane behavior; Post-tensioned wall; Unbonded post-tensioning bars
International Standard Serial Number (ISSN)
0141-0296
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 Elsevier, All rights reserved.
Publication Date
01 Apr 2017