Liposomal-Delivery of Phosphodiesterase 5 Inhibitors Augments UT-15C-Stimulated ATP Release from Human Erythrocytes
Abstract
The use of liposomes to affect targeted delivery of pharmaceutical agents to specific sites may result in the reduction of side effects and an increase in drug efficacy. Since liposomes are delivered intravascularly, erythrocytes, which constitute almost half of the volume of blood, are ideal targets for liposomal drug delivery.
In vivo, erythrocytes serve not only in the role of oxygen transport but also as participants in the regulation of vascular diameter through the regulated release of the potent vasodilator, adenosine triphosphate (ATP). Unfortunately, erythrocytes of humans with pulmonary arterial hypertension (PAH) do not release ATP in response to the physiological stimulus of exposure to increases in mechanical deformation as would occur when these cells traverse the pulmonary circulation. This defect in erythrocyte physiology has been suggested to contribute to pulmonary hypertension in these individuals.
In contrast to deformation, both healthy human and PAH erythrocytes do release ATP in response to incubation with prostacyclin analogs via a well-characterized signaling pathway. Importantly, inhibitors of phosphodiesterase 5 (PDE5) have been shown to significantly increase prostacyclin analog-induced ATP release from human erythrocytes.
Here we investigate the hypothesis that targeted delivery of PDE5 inhibitors to human erythrocytes, using a liposomal delivery system, potentiates prostacyclin analog- induced ATP release. The findings are consistent with the hypothesis that directed delivery of this class of drugs to erythrocytes could be a new and important method to augment prostacyclin analog-induced ATP release from these cells. Such an approach could significantly limit side effects of both classes of drugs without compromising their therapeutic effectiveness in diseases such as PAH.
Recommended Citation
E. A. Bowles et al., "Liposomal-Delivery of Phosphodiesterase 5 Inhibitors Augments UT-15C-Stimulated ATP Release from Human Erythrocytes," Biochemistry and Biophysics Reports, vol. 12, pp. 114 - 119, Elsevier B.V., Dec 2017.
The definitive version is available at https://doi.org/10.1016/j.bbrep.2017.09.002
Department(s)
Civil, Architectural and Environmental Engineering
Second Department
Chemistry
Keywords and Phrases
Liposomes; Red blood cell; Tadalafil; Treprostinil; UT-15C; Zaprinast
International Standard Serial Number (ISSN)
2405-5808
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 Elsevier B.V., All rights reserved.
Publication Date
01 Dec 2017
Comments
This work was supported by a basic research grant from United Therapeutics #00051330.