Superstructure in RE₂₋ₓFe₄Si14-y (RE = Y, Gd-Lu) Characterized by Diffraction, Electron Microscopy, and Mössbauer Spectroscopy
Abstract
Ternary rare-earth iron silicides RE2-xFe4Si14-y (RE = Y, Gd-Lu; x ≈ 0.8; y ≈ 4.1) crystallize in the hexagonal system with a ≈ 3.9 Å, c ≈ 15.3 Å, Pearson symbol hP20-4.9. Their structures involve rare-earth silicide planes with approximate compositions of "RE1.2Si1.9" alternating with ß-FeSi2-derived slabs and are part of a growing class of rare-earth/transition-metal/main-group compounds based on rare-earth/main-group element planes interspersed with (distorted) fluorite-type transition-metal/ main-group element layers. The rare-earth silicide planes in the crystallographic unit cells show partial occupancies of both the RE and Si sites because of interatomic distance constraints. Transmission electron microscopy reveals a 4a x 4b x c superstructure for these compounds, whereas further X-ray diffraction experiments suggest ordering within the ab planes but disordered stacking along the c direction. A 4a x 4b structural model for the rare-earth silicide plane is proposed, which provides good agreement with the electron microscopy results and creates two distinct Fe environments in a 15:1 ratio. Fe-57 Mössbauer spectra confirm these two different iron environments in the powder samples. Magnetic susceptibilities suggest weak (essentially no) magnetic coupling between rare-earth elements, and resistivity measurements indicate poor metallic behavior with a large residual resistivity at low temperatures, which is consistent with disorder. First-principles electronic-structure calculations on model structures identify a pseudogap in the densities of states for specific valence-electron counts that provides a basis for a useful electron-counting scheme for this class of rare-earth/transition-metal/main-group compounds.
Recommended Citation
M. K. Han et al., "Superstructure in RE₂₋ₓFe₄Si14-y (RE = Y, Gd-Lu) Characterized by Diffraction, Electron Microscopy, and Mössbauer Spectroscopy," Inorganic Chemistry, vol. 45, no. 26, pp. 10503 - 10519, American Chemical Society (ACS), Dec 2006.
The definitive version is available at https://doi.org/10.1021/ic061117c
Department(s)
Chemistry
International Standard Serial Number (ISSN)
0020-1669
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2006 American Chemical Society (ACS), All rights reserved.
Publication Date
01 Dec 2006