Resonant Two-photon Oxidation in Vanadium Oxyhydrate Nanowires Above a Threshold Laser Intensity
Abstract
The present work discloses the unusual photooxidation observed for V 3O 7•H 2O nanowires under 514 nm excitation above a threshold intensity of 0.30 kW/cm 2. We explicate this phenomenon by in-situ Raman and photoluminescence spectroscopy at varying laser intensities as well as models for the transformation kinetics and energy band structure associated with H 2OVO 5 octahedron. The photooxidation is found to be triggered by two-photon cleavage of the H 2O-V bond through excitation via nonbonding d-states. Subsequently, V 3O 7 spontaneously oxidizes to V 2O 5. However, the competing process of H 2O's rebonding is also realized. Hence, transformation to V 2O 5 occurs only if the H 2O-V bond-cleavage rate exceeds a threshold, pushing the number of concomitantly broken bonds in the smallest structural unit to a critical number. © 2012 American Chemical Society.
Recommended Citation
Ç. Ö. Topal et al., "Resonant Two-photon Oxidation in Vanadium Oxyhydrate Nanowires Above a Threshold Laser Intensity," Journal of Physical Chemistry C, American Chemical Society (ACS), Jan 2012.
The definitive version is available at https://doi.org/10.1021/jp2108494
Department(s)
Chemistry
International Standard Serial Number (ISSN)
1932-7447
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2012 American Chemical Society (ACS), All rights reserved.
Publication Date
01 Jan 2012