Abstract

A mixed-metal ternary chalcogenide, cobalt molybdenum telluride (CMT), has been identified as an efficient tri-functional electrocatalyst for seawater splitting, leading to enhanced oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR). The CMT was synthesized by a single step hydrothermal technique. Detailed electrochemical studies of the CMT-modified electrodes showed that CMT has a promising performance for OER in the simulated seawater solutions, exhibiting a small overpotential of 385 mV at 20 mA cm−2, and superior catalyst durability for prolonged period of continuous oxygen evolution. Interestingly, while gas chromatography analysis confirmed the evolution of oxygen in an anodic chamber, it showed that there was no chlorine evolution from these electrodes in alkaline seawater, highlighting the novelty of this catalyst. CMT also displayed remarkable ORR activity in simulated seawater as indicated by its four-electron reduction pathway forming water as the dominant product. One of the primary challenges of seawater splitting is chlorine evolution from the oxidation of dissolved chloride salts. The CMT catalyst successfully and significantly lowers the water oxidation potential, thereby separating the chloride and water oxidation potentials by a larger margin. These results suggest that CMT can function as a highly active tri-functional electrocatalyst with significant stability, making it suitable for clean energy generation and environmental applications using seawater.

Department(s)

Chemistry

Publication Status

Open Access

Comments

National Science Foundation, Grant CHE-215175

Keywords and Phrases

hydrogen evolution reaction; oxygen evolution reaction; oxygen reduction reaction; seawater splitting; tri-functional electrocatalyst

International Standard Serial Number (ISSN)

2073-4344

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Oct 2024

Share

 
COinS