Abstract

Tripodal ligands that can encapsulate single or multiple metal sites in C3-symmetric geometric configurations constitute valuable targets for novel catalysts. Of particular interest in ligand development are efforts toward incorporating apical elements that exhibit little if any electron donicity, to enhance the electrophilic nature of a trans positioned active oxidant (e.g., metal-oxo, -nitrene). The tripodal ligand TMG3trphen-Arene has been synthesized, featuring an arene platform 1,3,5-substituted with phenylene arms possessing tetramethylguanidinyl (TMG) residues. Compound [(TMG3trphen-Arene) Cu3(μ-Cl)3] has been subsequently synthesized by extracting a Cu3(μ-Cl)3 cluster from anhydrous CuCl and shown to encapsulate a crown-shaped Cu3(μ-Cl)3 fragment, supported by Cu-NTMG bonds and modest Cu3⋯arene long-range contacts. Energy decomposition analysis (EDA) indicates that electrostatic contributions to the total interaction energy far exceed those due to orbital interactions. The latter involve orbital pairings largely associated with the NTMG stabilization of the Cu3(μ-Cl)3 cluster. The independent gradient model based on the Hirshfeld partition (IGMH) corroborates that contacts between the arene platform and the Cu3 triangle are noncovalent in nature. Catalyst [(TMG3trphen-Arene) Cu3(μ-Cl)3] enables amination of sec-benzylic and tert-C-H bonds of a panel of substrates by pre-synthesized PhINTces in solvent matrices that incorporate small amounts of HFIP. The involvement of an electrophilic aminating agent is evidenced by the better yields obtained for electron-rich benzylic sites and is further supported by Hammett analysis that reveals the development of a small positive charge during C-H bond activation. A rather modest KIE effect (2.1) is obtained from intramolecular H(D) competition in the amination of ethylbenzene, at the borderline of reported values for concerted and stepwise C-H amination systems. DFT analysis of the putative copper-nitrene oxidant indicates that the nitrene N atom is bridging between two copper sites in closely spaced triplet (ground state) and broken-symmetry singlet electronic configurations.

Department(s)

Chemistry

Comments

National Institutes of Health, Grant R15GM117508

International Standard Serial Number (ISSN)

1477-9234; 1477-9226

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Royal Society of Chemistry, All rights reserved.

Publication Date

06 Sep 2024

PubMed ID

39264342

Share

 
COinS