Abstract
UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP+. NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery. © 2012 American Chemical Society.
Recommended Citation
R. Dhatwalia et al., "Identification of the NAD(P)H Binding Site of Eukaryotic UDP-galactopyranose Mutase," Journal of the American Chemical Society, vol. 134, no. 43, pp. 18132 - 18138, American Chemical Society, Oct 2012.
The definitive version is available at https://doi.org/10.1021/ja308188z
Department(s)
Chemistry
International Standard Serial Number (ISSN)
1520-5126; 0002-7863
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 American Chemical Society, All rights reserved.
Publication Date
31 Oct 2012
PubMed ID
23036087
Comments
National Institute of General Medical Sciences, Grant R01GM094469