Abstract

Rifampicin monooxygenase (RIFMO) decreases the potency of rifampicin (RIF) by converting it to oxidative products. Further decomposition of RIF has been observed in bacteria producing RIFMO and contributes to RIFMO-mediated drug resistance. Here we report the first crystal structure of RIFMO in complex with the hydroxylated RIF product. The 2.10 Å resolution structure reveals a breach of the ansa aliphatic chain of RIF between naphthoquinone C2 and amide N1. Our data suggest that RIFMO catalyzes the hydroxylation of RIF at the C2 atom followed by cleavage of the ansa linkage, which leads to inactivation of the antibiotic by preventing key contacts with the RNA polymerase target.

Department(s)

Chemistry

Comments

National Science Foundation, Grant 1506206

International Standard Serial Number (ISSN)

1520-4995; 0006-2960

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Chemical Society, All rights reserved.

Publication Date

10 Apr 2018

PubMed ID

29578336

Included in

Chemistry Commons

Share

 
COinS