New Frontiers in Flavin-dependent Monooxygenases

Abstract

Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.

Department(s)

Chemistry

Comments

National Science Foundation, Grant 2003658

Keywords and Phrases

Antibiotics; Conformational changes; Drug target; Flavin motions; Homolytic bond cleavage; Monooxygenation; Oxygen activation

International Standard Serial Number (ISSN)

1096-0384; 0003-9861

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Publication Date

15 Mar 2021

PubMed ID

33460580

Share

 
COinS