Abstract

Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All'ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H2O2 stationary points studied here. © 2006 American Chemical Society.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

1089-5639

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Chemical Society, All rights reserved.

Publication Date

08 Jun 2006

Included in

Chemistry Commons

Share

 
COinS