Abstract

In order to minimize unintentional detonation, munitions researchers have focused on the development of chemical compounds that are insensitive to external stimuli while maintaining their effectiveness. Although these compounds, known as high-performance insensitive munition compounds, are promising in terms of potency and stability, their environmental impacts have either not been fully understood or are yet to be investigated. In the present research, we have performed a quantum chemical investigation on electronic structures and properties of an insensitive munition compound 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM). The density functional theory using the B3LYP and M06-2X functionals and MP2 methodology were used for geometry optimization of various tautomeric forms of DNAM. The effect of bulk water solution was evaluated using the conductor-like polarizable continuum model and the density-based solvation model. Ionization potentials, electron affinities, redox properties, and pKa values were also computed and compared with the available experimental data. These physical and chemical properties of DNAM have been discussed with regard to the varying tautomeric forms in which DNAM can exist.

Department(s)

Chemistry

Comments

National Science Foundation, Grant 1664998

International Standard Serial Number (ISSN)

1520-5215; 1089-5639

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Chemical Society, All rights reserved.

Publication Date

25 Apr 2019

PubMed ID

30920835

Included in

Chemistry Commons

Share

 
COinS