Abstract
Stable room-temperature ionic liquids (RTILs) have been used as novel reaction solvents. They can solubilize complex polar molecules such as cyclodextrins and glycopeptides. Their wetting ability and viscosity allow them to be coated onto fused silica capillaries. Thus, 1-butyl-3- methylimidazolium hexafluorophosphate and the analogous chloride salt can be used as stationary phases for gas chromatography (GC). Using inverse GC, one can examine the nature of these ionic liquids via their interactions with a variety of compounds. The Rohrschneider-McReynolds constants were determined for both ionic liquids and a popular commercial polysiloxane stationary phase. Ionic liquid stationary phases seem to have a dual nature. They appear to act as a low-polarity stationary phase to nonpolar compounds. However, molecules with strong proton donor groups, in particular, are tenaciously retained. The nature of the anion can have a significant effect on both the solubilizing ability and the selectivity of ionic liquid stationary phases. It appears that the unusual properties of ionic liquids could make them beneficial in many areas of separation science.
Recommended Citation
D. W. Armstrong et al., "Examination of Ionic Liquids and their Interaction with Molecules, When Used as Stationary Phases in Gas Chromatography," Analytical Chemistry, vol. 71, no. 17, pp. 3873 - 3876, American Chemical Society, Sep 1999.
The definitive version is available at https://doi.org/10.1021/ac990443p
Department(s)
Chemistry
International Standard Serial Number (ISSN)
0003-2700
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 American Chemical Society, All rights reserved.
Publication Date
01 Sep 1999
PubMed ID
10489532
Comments
National Institute of General Medical Sciences, Grant R01GM053825