There are a large number of antibiotic macrocycles which include several different structural types. Three representative macrocyclic compounds were covalently linked to silica gel and evaluated by HPLC for their ability to resolve racemic mixtures as well as for their stability and loadability. Over 70 compounds were resolved. In some cases separations were achieved that have not been reported on any other chiral stationary phase (CSP). These stationary phases appear to be multimodal in that they can be used in both the normal-phase and reversed-phase modes. Different compounds are resolved in each mode. There does not appear to be any deleterious effects to the stationary phases or any irreversible changes in the enantioselectivity when changing from one mode to another. The diversity of functionality of some of these chiral selectors is only approached by that of glycoproteins. Consequently, enantioseparation may be possible via several different mechanisms including π-π; complexation, hydrogen bonding, inclusion in a hydrophobic pocket, dipole stacking, steric interactions, or combinations thereof. While all other CSPs avail themselves of the same type of interactions, they are not all necessarily available in a single chiral selector and in relatively close proximity to one another. Macrocyclic antibiotics seem to have many of the useful enantioselectivity properties of proteins and other polymeric chiral selectors without their inherent problems of instability and low capacities. © 1994, American Chemical Society. All rights reserved.



International Standard Serial Number (ISSN)

1520-6882; 0003-2700

Document Type

Article - Journal

Document Version


File Type





© 2024 American Chemical Society, All rights reserved.

Publication Date

01 May 1994

Included in

Chemistry Commons