Interpolating Moving Least-squares Methods for Fitting Potential Energy Surfaces: A Strategy for Efficient Automatic Data Point Placement in High Dimensions
Abstract
An accurate and efficient method for automated molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating moving least-squares (IMLS) method is developed with the flexibility to fit various ab initio data: (1) energies, (2) energies and gradients, or (3) energies, gradients, and Hessian data. The method is automated and flexible so that a PES can be optimally generated for trajectories, spectroscopy, or other applications. High efficiency is achieved by employing local IMLS in which fitting coefficients are stored at a limited number of expansion points, thus eliminating the need to perform weighted least-squares fits each time the potential is evaluated. An automatic point selection scheme based on the difference in two successive orders of IMLS fits is used to determine where new ab initio data need to be calculated for the most efficient fitting of the PES. A simple scan of the coordinate is shown to work well to identify these maxima in one dimension, but this search strategy scales poorly with dimension. We demonstrate the efficacy of using conjugate gradient minimizations on the difference surface to locate optimal data point placement in high dimensions. Results that are indicative of the accuracy, efficiency, and scalability are presented for a one-dimensional model potential (Morse) as well as for three-dimensional (HCN), six-dimensional (HOOH), and nine-dimensional (CH4) molecular PESs.
Recommended Citation
R. Dawes et al., "Interpolating Moving Least-squares Methods for Fitting Potential Energy Surfaces: A Strategy for Efficient Automatic Data Point Placement in High Dimensions," Journal of Chemical Physics, vol. 128, no. 8, American Institute of Physics (AIP), Feb 2008.
The definitive version is available at https://doi.org/10.1063/1.2831790
Department(s)
Chemistry
Keywords and Phrases
Interpolation; Least squares approximations; Spectroscopic analysis; Hessian data; Interpolating moving least-squares (IMLS) method; Potential energy surfaces
International Standard Serial Number (ISSN)
0021-9606
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2008 American Institute of Physics (AIP), All rights reserved.
Publication Date
01 Feb 2008