Abstract

Silicon is a promising next-generation anode to increase energy density over commercial graphite anodes, but calendar life remains problematic. In this work, scanning electrochemical microscopy was used to track the site-specific reactivity of a silicon thin film surface over time to determine if undesirable Faradaic reactions were occurring at the formed solid electrolyte interphase (SEI) during calendar aging in four case scenarios: formation between 1.5 V and 100 mV with subsequent rest starting at (1) 1.5 V and (2) 100 mV and formation between 0.75 V and 100 mV with subsequent rest starting at (3) 0.75 V and (4) 100 mV. In all cases, the electrical passivation of silicon decreased with increasing time and potential relative to Li/Li+ over a 3 day period. Along with the decrease in passivation, the homogeneity of passivation over a 500 μm2 area decreased with time. Despite some local "hot spots" of reactivity, the areal uniformity of passivation suggests global SEI failure (e.g., SEI dissolution) rather than localized (e.g., cracking) failure. The silicon delithiated to 1.5 V vs Li/Li+ was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, kf, for ferrocene redox were 7.19 x 10-5 and 3.17 x 10-7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface (kf of 5 x 10-5 m/s). This reactivity was likely the result of SEI oxidation. When the cell was only delithiated up to 0.75 V versus Li/Li+, the surface was still passivating (kf of 6.11 x 10-6 m/s), but still less so than the lithiated surface (kf of 3.03 x 10-9 m/s). This indicates that the potential of the anode should be kept at or below ∼0.75 V vs Li/Li+ to prevent decreasing SEI passivation. This information will help with tuning the voltage windows for prelithiation in Si half cells and the operating voltage of Si full cells to optimize calendar life. The results provided should encourage the research community to investigate chemical, rather than mechanical, modes of failure during calendar aging and to stop using the typical convention of 1.5 V as a cutoff potential for cycling Si in half cells.

Department(s)

Chemistry

Publication Status

Open Access

Comments

U.S. Department of Energy, Grant DE-NA0003525

Keywords and Phrases

battery; calendar aging; passivation; SECM; SEI; silicon

International Standard Serial Number (ISSN)

1944-8252; 1944-8244

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Chemical Society, All rights reserved.

Publication Date

17 Apr 2024

PubMed ID

38578233

Included in

Chemistry Commons

Share

 
COinS