A Molecular Dynamics Study of Classical Vibrational Spectra in Hydrostatically Compressed Crystalline Nitromethane
Abstract
The effects of pressure on the vibrational spectra of crystalline nitromethane have been studied by computing normal-mode frequencies and eigenvectors and classical power spectra at several hydrostatic pressures between 0 and 27.3 GPa using the full-dimensional Sorescu-Rice-Thompson (J. Phys. Chem. B 2000, 104, 8406) (SRT) valence force field. The purpose of the study was to determine the limits within which the SRT force field, and classical mechanics more generally, captures the qualitative pressure effects observed experimentally. The current results exhibit good overall agreement between the calculated normal-mode frequencies (and especially their pressure-dependent shifts) and those obtained in published experimental and theoretical studies. Comparisons of the pressure dependencies near room temperature of classical power spectra to experimental pressure-dependent infrared (IR) spectra for particular vibrational modes yield, in the case of the CN stretch, a CH3 deformation, and the NO2 asymmetric stretch, intriguingly similar evolution of spectral intensity with respect to pressure, whereas for the case of the NO2 symmetric stretch mode the classical result bears little similarity to the experimental result.
Recommended Citation
A. Siavosh-Haghighi et al., "A Molecular Dynamics Study of Classical Vibrational Spectra in Hydrostatically Compressed Crystalline Nitromethane," Journal of Physical Chemistry B, vol. 114, no. 51, pp. 17177 - 17186, American Chemical Society (ACS), Dec 2010.
The definitive version is available at https://doi.org/10.1021/jp109106k
Department(s)
Chemistry
Keywords and Phrases
Computational chemistry; Crystalline materials; Hydrostatic pressure; Nitrogen oxides; Power spectrum; Pressure effects; Vibrational spectra, Classical mechanics; Force fields; Near room temperature; Nitromethane; Normal-mode frequencies; Power-spectra; Pressure dependencies; Spectral intensity; Theoretical study; Valence force fields; Vibrational modes, Molecular dynamics
International Standard Serial Number (ISSN)
1520-6106
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2010 American Chemical Society (ACS), All rights reserved.
Publication Date
01 Dec 2010