Abstract

Macromolecules at the surface of a polymeric solid have considerable mobility, and the specific arrangement of functional groups of macromolecules at the surface is dictated by the environmental conditions in which the surface is placed. Consequently, the change of environmental conditions, such as immersion in water or placement in a biological surrounding, could cause a considerable degree of change in the surface characteristics of a polymer from those evaluated in the laboratory against ambient air. The mobile nature of a polymer surface can be investigated by surface‐implanting fluorine‐containing moieties, mainly—CF3, by the plasma implantation technique and following the disappearance and reappearance of fluorine atoms on the surface. The disappearance rates (based on the immersion time in water at room temperature) of ESCA F1s signals, the decay rates of (advancing) contact angle of water, and the recovery of these values on heat treatment of water‐immersed samples were measured as a function of crystallinity of polymer samples (at three levels of crystallinity) for poly (ethylene terephthalate) and nylon 6. Copyright © 1988 John Wiley & Sons, Inc.

Department(s)

Chemistry

Publication Status

Full Access

International Standard Serial Number (ISSN)

1099-0488; 0887-6266

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Wiley, All rights reserved.

Publication Date

01 Jan 1988

Included in

Chemistry Commons

Share

 
COinS