Abstract
Foam stability was related to phase behavior in a foamed three-phase region consisting of an aqueous solution (L1), an alcohol solution (L2) and lamellar liquid-crystalline (LC) phases in the C8H17SO3Na/C8H17OH/H2O system. The state of the system before foaming was LC/L2 + LC/L1 or L1 + L2/LC type emulsions up to a high octanol/water ratio of 77/23. In L2 + LC/L1 emulsion, the LC droplets exist separately from the alcohol droplets in an aqueous continuous medium. The viscosity of the system was enhanced with an increase in the content of dispersed phases, i.e. alcohol and/or liquid crystal phases contributing to the stabilizing of the foam. With higher than optimal liquid-crystalline phases present the high viscosity prevented foaming. Higher than optimal alcohol amounts led to phase inversion and instability. The drainage rate of the alcohol phase was considerably faster than of the other phases. As a result, the three-phase foam was stabilized by the liquid-crystalline phase for the water continuous part of the system in spite of the presence of a foam-destabilizing compound, octanol. © 1986.
Recommended Citation
H. Kunieda and S. Friberg, "Foams From A Three-phase Emulsion," Colloids and Surfaces, vol. 21, pp. 17 - 26, Elsevier, Jan 1986.
The definitive version is available at https://doi.org/10.1016/0166-6622(86)80079-8
Department(s)
Chemistry
International Standard Serial Number (ISSN)
0166-6622
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
01 Jan 1986
Comments
Office of Naval Research, Grant N 00014-84-K-509