Abstract

Disrupted Functional and Structural Connectivity Measures Have Been Used to Distinguish Schizophrenia Patients from Healthy Controls. Classification Methods based on Functional Connectivity Derived from EEG Signals Are Limited by the Volume Conduction Problem. Recorded Time Series at Scalp Electrodes Capture a Mixture of Common Sources Signals, Resulting in Spurious Connections. We Have Transformed Sensor Level Resting State EEG Times Series to Source Level EEG Signals Utilizing a Source Reconstruction Method. Functional Connectivity Networks Were Calculated by Computing Phase Lag Values between Brain Regions at Both the Sensor and Source Level. Brain Complex Network Analysis Was Used to Extract Features and the Best Features Were Selected by a Feature Selection Method. a Logistic Regression Classifier Was Used to Distinguish Schizophrenia Patients from Healthy Controls at Five Different Frequency Bands. the Best Classifier Performance Was based on Connectivity Measures Derived from the Source Space and the Theta Band.The Transformation of Scalp EEG Signals to Source Signals Combined with Functional Connectivity Analysis May Provide Superior Features for Machine Learning Applications.

Department(s)

Chemistry

Second Department

Electrical and Computer Engineering

Comments

Army Research Laboratory, Grant W911NF-14-2-0034

International Standard Book Number (ISBN)

978-172811179-7

International Standard Serial Number (ISSN)

1557-170X

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jan 2021

PubMed ID

34891630

Share

 
COinS