Abstract
Methylaluminoxane (MAO) is the most commonly used co‐catalyst for transition metalcatalyzed olefin polymerization, but the structures of MAO species and their catalytic functions remain topics of intensive study. We are interested in MAO‐assisted polymerization with catalysts L(R2)FeCl2 (L = tridentate pyridine‐2,6‐diyldimethanimine; imine‐R = Me, Ph). It is our hypothesis that the MAO species is not merely enabling Fe−Me bond formation but functions as an integral part of the active catalyst, a MAO adduct of the Fe‐precatalyst [L(R2)FeCl]+. In this paper, we explored the possible structures of acyclic and cyclic MAO species and their complexation with pre‐catalysts [L(R2)FeCl]+ using quantum chemical approaches (MP2 and DFT). We report absolute and relative oxophilicities associated with the Fe←O(MAO) adduct formation and provide compelling evidence that oxygen of an acyclic MAO species (i.e., O(AlMe2)2, 4) cannot compete with the O‐donor in cyclic MAO species (i.e., (MeAlO)2, 7; MeAl(OAlMe2)2, cyclic 5). Significantly, our work demonstrates that intramolecular O→Al dative bonding results in cyclic isomers of MAO species (i.e., cyclic 5) with high oxophilicities. The stabilities of the [L(R2)FeClax(MAO)eq]+ species demonstrate that 5 provides for the ligating benefits of the cyclic MAO species 4 without the thermodynamically costly elimination of TMA. Mechanistic implications are discussed for the involvement of such Fe−O−Al bridged catalyst in olefin polymerization.
Recommended Citation
K. Yang and R. Glaser, "Transition Metal‐Catalyzed and MAO‐Assisted Olefin Polymerization. Cyclic Isomers of Sinn’s Dimer Are Excellent Ligands in Iron Complexes and Great Methylating Reagents," Catalysts, vol. 12, no. 3, article no. 312, MDPI, Mar 2022.
The definitive version is available at https://doi.org/10.3390/catal12030312
Department(s)
Chemistry
Keywords and Phrases
Iron pre‐catalyst; Methylaluminoxane (MAO); Molecular modeling; Olefin polymerization; Oxophilicity; Pre‐catalyst MAO adduct
International Standard Serial Number (ISSN)
2073-4344
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Mar 2022
Comments
National Science Foundation, Grant 1665487