Colloidal unimolecular polymer (CUP) particles were made using polymers with different ratios of hydrophobic and hydrophilic monomers via a self-organization process known as water reduction. The water-reduction process and the collapse of the polymer chain to form a CUP were tracked using viscosity measurements as a function of composition. A vibration viscometer, which allowed for viscosity measurement as the water was being added during the water-reduction process, was utilized. The protocol was optimized and tested for factors such as temperature control, loss of material, measurement stability while stirring, and changes in the solution volume with the addition of water. The resulting viscosity curve provided the composition of Tetrahydrofuran (THF)/water mixture that triggers the collapse of a polymer chain into a particle. Hansen as well as dielectric parameters were related to the polymer composition and percentage v/v of THF/water mixture at the collapse point. It was observed that the collapse of the polymer chain occurred when the water/THF composition was at a water volume of between 53.8 to 59.3% in the solvent mixture.




The authors would like to thank the Department of Chemistry and the Missouri S&T Coatings Institute for financial support.

Keywords and Phrases

Chain Collapse; Colloidal Unimolecular Polymer (CUP); Hansen Parameters; Single-Chain Polymer Nanoparticle; Vibration Viscometer

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2022 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 May 2022

Included in

Chemistry Commons