Abstract

Quasiclassical trajectories simulations are performed to study the influence of surface temperature on the dynamics of a N atom colliding a N-preadsorbed W(100) surface under normal incidence. A generalized Langevin surface oscillator scheme is used to allow energy transfer between the nitrogen atoms and the surface. The influence of the surface temperature on the N2 formed molecules via Eley-Rideal recombination is analyzed at T = 300, 800, and 1500 K. Ro-vibrational distributions of the N2 molecules are only slightly affected by the presence of the thermal bath whereas kinetic energy is rather strongly decreased when going from a static surface model to a moving surface one. In terms of reactivity, the moving surface model leads to an increase of atomic trapping cross section yielding to an increase of the so-called hot atoms population and a decrease of the direct Eley-Rideal cross section. The energy exchange between the surface and the nitrogen atoms is semi-quantitatively interpreted by a simple binary collision model.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

0021-9606

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

©2013 AIP Publishing, All rights reserved.

Publication Date

14 Jan 2013

Share

 
COinS