Theoretical Calculations, Microwave Spectroscopy, and Ring-Puckering Vibrations of 1,1-Dihalosilacyclopent-2-Enes
Abstract
High-level theoretical CCSD/cc-pVTZ computations have been carried out to calculate the structures and ring-puckering potential energy functions (PEFs) for 1,1-difluorosilacyclopent-2-ene (2SiCPF2) and 1,1-dichlorosilacyclopent-2-ene (2SiCPCl2). The structure and PEF for 1,1-dibromosilacyclopent-2-ene (2SiCPBr2) were obtained by ab initio MP2/cc-pVTZ computations. The parent silacyclopent-2-ene (2SiCP) is puckered with a 49 cm-1 barrier to planarity, 2SiCPF2 has a planar ring system, 2SiCPCl2 has a calculated tiny 4 cm-1 barrier but is essentially planar, and the dibromide has a calculated barrier of 36 cm-1. Microwave spectra of seven isotopic species of 2SiCPF2 were recorded on a chirped pulse, Fourier transform microwave (CP-FTMW) spectrometer in the 6-18 GHz region. The a-type and b-type transitions were observed. The rotational constants and three quartic centrifugal distortion constants were determined for the parent, 29Si, 30Si, and all singly substituted 13C isotopologues in natural abundance. This allowed for the determination of the heavy-atom structure of the ring and showed the ring to be planar. The experimentally determined rotational constants and geometrical parameters agree very well with the theoretical values and confirm the planarity of the five-membered ring. A comparison of the PEFs for the silane and the three dihalides shows the silane to have the stiffest puckering motion and the dibromide to be the least rigid.
Recommended Citation
T. M. McFadden et al., "Theoretical Calculations, Microwave Spectroscopy, and Ring-Puckering Vibrations of 1,1-Dihalosilacyclopent-2-Enes," Journal of Physical Chemistry A, vol. 124, no. 40, pp. 8254 - 8262, American Chemical Society (ACS), Oct 2020.
The definitive version is available at https://doi.org/10.1021/acs.jpca.0c07250
Department(s)
Chemistry
Research Center/Lab(s)
Center for High Performance Computing Research
International Standard Serial Number (ISSN)
1089-5639; 1520-5215
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2020 American Chemical Society (ACS), All rights reserved.
Publication Date
08 Oct 2020
PubMed ID
32915569
Comments
National Science Foundation, Grant 1429308