Abstract

The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications, particularly in the generation of various precious metal catalysts. Thus, monolithic nanoporous carbon-supported Fe, Au, Pt, Pd, Co, Ni, Ru, and Rh catalysts are disclosed herein, which are derived by pyrolysis and transmetalation via galvanic replacement of ferrocene-based polyamide aerogels.

Department(s)

Chemistry

Patent Application Number

US14/969,650

Patent Number

US9593225B2

Document Type

Patent

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2017 The Curators of the University of Missouri, All rights reserved.

Publication Date

14 Mar 2017

Included in

Chemistry Commons

Share

 
COinS