Electron Delocalization and Charge Mobility as a Function of Reduction in a Metal–Organic Framework
Abstract
Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of KxFe2(BDP)3 (0 ≤ x ≤ 2; BDP2− = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a Kx Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.
Recommended Citation
M. L. Aubrey and B. M. Wiers and S. C. Andrews and T. Sakurai and S. E. Reyes-Lillo and S. M. Hamed and C. Yu and L. E. Darago and J. A. Mason and J. Baeg and F. R. Grandjean and G. J. Long and S. Seki and J. B. Neaton and P. Yang and J. R. Long, "Electron Delocalization and Charge Mobility as a Function of Reduction in a Metal–Organic Framework," Nature Materials, vol. 17, pp. 625 - 632, Nature Publishing Group, Jun 2018.
The definitive version is available at https://doi.org/10.1038/s41563-018-0098-1
Department(s)
Chemistry
Research Center/Lab(s)
Center for High Performance Computing Research
International Standard Serial Number (ISSN)
1476-1122; 1476-4660
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Nature Publishing Group. All rights reserved.
Publication Date
01 Jun 2018