Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators
Abstract
Wearable and flexible electronics warrant the development of self-powered devices to circumvent the limitations imposed by traditional energy storage devices. Triboelectric nanogenerators (TENGs) that convert waste mechanical energy from human motions into electric power offer a solution. Highly electronegative and yet conducting TENG materials that support the generation of both large potential differences and high currents are imperative for effectively harvesting electric power from human muscle movements. Here, we demonstrate that two-dimensional titanium carbide MXenes (Ti3C2Tx, where Tx stands for surface functional groups such as -O, -OH, and –F) are a new family of electrically conducting materials that are triboelectrically more negative than polytetrafluorethylene or Teflon. Specifically, flexible MXene TENGs support both high open circuit voltages ranging from ~500 to ~650 V and an instantaneous peak power up to ~0.5-0.65 mW that could power > 60 light-emitting diodes or quickly charge a 1 μF capacitor up to 50 V. Lastly, we demonstrate that flexible MXene TENGs are capable of harvesting electrical power from simple muscle movements (e.g., texting) even when the device is flexed by ~30° suggesting facile integration with wearable electronics.
Recommended Citation
Y. Dong et al., "Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators," Nano Energy, vol. 44, pp. 103 - 110, Elsevier, Feb 2018.
The definitive version is available at https://doi.org/10.1016/j.nanoen.2017.11.044
Department(s)
Chemistry
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Triboelectric Nanogenerator; Renewable Energy; Wearable Electronics; Mxene, Flexible Device
International Standard Serial Number (ISSN)
2211-2855
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Elsevier, All rights reserved.
Publication Date
01 Feb 2018